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Abstract—An integral part of many data-intensive applica-
tions is the need to collect and analyze enormous datasets
efficiently. Concurrent with such application needs is the in-
creasing adoption of MapReduce as a programming model for
processing large datasets using a cluster of machines. Current
MapReduce systems, however, require the data set to be loaded
into the cluster before running analytical queries, and thereby
incur high delays to start query processing. Furthermore,
existing systems are geared towards batch processing.

In this paper, we seek to answer a fundamental question:
what architectural changes are necessary to bring the benefits
of the MapReduce computation model to incremental, one-
pass analytics, i.e., to support stream processing and online
aggregation? To answer this question, we first conduct a
detailed empirical performance study of current MapReduce
implementations including Hadoop and MapReduce Online
using a variety of workloads. By doing so, we identify several
drawbacks of existing systems for one-pass analytics. Based on
the insights from our study, we list key design requirements
for incremental one-pass analytics and argue for architectural
changes of MapReduce systems to overcome their current
limitations. We conclude by sketching an initial design of
our new MapReduce-based platform for incremental one-pass
analytics and showing promising preliminary results.

Keywords-MapReduce; performance analysis; data streams;
parallel data processing

I. INTRODUCTION

An integral part of many data-intensive applications is the
need to collect and analyze enormous datasets efficiently.
MapReduce has emerged as a popular programming model
for parallel processing of large datasets using a cluster of
machines. Current MapReduce systems, however, require
the data set to be loaded into the cluster before running
analytical queries, and thereby incur high delays to start
query processing and produce results. Furthermore, existing
systems are geared towards batch processing. Despite these
limitations, it is attractive to consider whether the benefits
of the MapReduce model can be brought to systems that
perform scalable one-pass analytics over large data sets.

Consequently, in this paper, we seek to answer a fundamen-
tal question: is the MapReduce computation model suitable
for incremental, one-pass analytics? This includes both stream
processing and online aggregation with early approximate
answers. To perform incremental one-pass analytics, the
system must be able to evaluate the query on a large data

set as data arrives into the system!. There are two primary
challenges in doing so:

» Incremental processing. Data stream processing re-
quires that an answer to a query be produced as soon as
all the data needed to produce this answer has been read.
Since current MapReduce systems wait until the entire
data set is loaded to begin query processing and further
employ batch processing of query programs, they are
ill-suited for incremental processing.

» Performance. Scalable one-pass analytics for parallel
stream processing requires fast in-memory processing
of a MapReduce query program for all (or most) of
the data. If some subset of data has to be staged to
disks, then the I/O cost of such disk operations must
be minimized. In contrast, existing MapReduce query
programs can trigger both expensive CPU operations
and significant amounts of intermediate I/O to stage
data in map and reduce processing.

To better understand how to address these challenges,
in this paper, we conduct a detailed performance study of
existing MapReduce systems using a range of workloads
and storage architectures. In doing so, our paper makes the
following technical contributions.

1. We begin by benchmarking the current MapReduce
computation model using the popular open-source Hadoop
implementation and the recently proposed MapReduce Online
system [6] with pipelining of intermediate data. We consider
a variety of workloads, including click stream analysis and
web document analysis, and a range of architectural choices.
Based on a rigorous analysis of our experimental results, we
find that the current MapReduce computation model uses a
sort-merge technique to support parallel processing, which
poses a significant barrier to incremental one-pass analytics:
(i) The sorting step of the sort-merge implementation incurs
expensive CPU operations. (ii) The merge step in sort-merge
is blocking and can incur significant I/O costs given large
amounts of intermediate data. (iii) Using extra storage devices
and alternative storage architectures do not eliminate blocking
or the I/O bottleneck.

We also find that MapReduce Online takes only a limited
step towards stream processing—its pipelining does not

We do not consider an infinite sequence due to the overhead of
fault tolerance as explained in [6].



significantly reduce blocking or CPU and I/O overheads,
from a stream processing standpoint, and only redistributes
workloads between the map and reduce tasks in a query
program.

2. Based on the insights from our study, we highlight
several key design requirements that must be addressed to
perform incremental one-pass analytics using MapReduce.
We argue for architectural changes of MapReduce systems
in order to overcome their current limitations, including (i)
replacing the sort-merge implementation of the MapReduce
computation model with a purely hash-based method, (i7) ex-
tending the hash implementation with incremental processing
and partial aggregation for a wide range of analytical tasks,
and (iii) when memory is limited, supporting fast in-memory
processing of important groups of data with little I/O cost.

We conclude the paper by sketching an initial design of
our new MapReduce-based platform for incremental one-pass
analytics and showing promising preliminary results.

II. BACKGROUND ON MAPREDUCE

To provide a technical context for the discussion below,
we begin with background on MapReduce systems.

At the API level, the MapReduce programming model
simply includes two functions: The map function transforms
input data into (key, value) pairs, and the reduce function
is applied to each list of values that correspond to the
same key. This programming model abstracts away complex
distributed systems issues, thereby providing users with rapid
utilization of computing resources. As an example, consider
how we would parse a click stream to find the most visited
pages. More specifically, we want to count how many times
each page has been visited. Suppose the schema for a visits
table is (timestamp, user, url). Consider the following SQL
query:

SELECT COUNT (x) FROM visits GROUP BY url;

Page clicks are grouped by url and then aggregated using
COUNT for each url. Now consider the equivalent MapReduce
job for computing page frequencies below. The map function
emits a new <url, count> tuple for each visit in the click
stream, where the count is 1. The reduce function then groups
these tuples by url and sums the number of visits to each
url.

function map (rid, visit) {
emit (visit.url, 1); }

function reduce (url, iterator<int> count)

{
int total = 0;
foreach count c
total += c;
emit (url, total); }

To achieve parallelism, the MapReduce system essentially
implements “group data by key, then apply the reduce
Sfunction to each group”. This computation model, referred to
as MapReduce group-by, permits parallelism because both
the extraction of (key, value) pairs and the application of the
reduce function to each group can be performed in parallel
on many nodes. The system code of MapReduce implements
this computation model (and other functionality such as load
balancing and fault tolerance).

The MapReduce program of an analytical query includes
both the map and reduce functions compiled from the query
(e.g., using a MapReduce-based query compiler [23], [14])
and the MapReduce system’s code for parallelism.

A. Overview of the Hadoop Implementation

We consider Hadoop, the most popular open-source
implementation of MapReduce, in our study. Hadoop uses
block-level scheduling and a sort-merge technique [33] to
implement the group-by functionality for parallel processing
(Google’s MapReduce system is reported to use a similar
implementation [7], but further details are lacking due to the
use of proprietary code).

The Hadoop Distributed File System (HDFS) handles fault
tolerance and replication for reading job input data and
writing job output data. By default, the unit of data storage in
HDFEFS is a 64MB block and can be set to other values during
configuration. These blocks serve as the task granularity for
MapReduce jobs.

Given a query, its MapReduce job is assigned m map tasks
(mappers) and r reduce tasks (reducers) concurrently on each
node. As Fig. 1 shows, each mapper reads a block of input
data, applies the map function to extract key-value pairs,
then assigns these data items to partitions that correspond to
different reducers, and finally sorts the data items in each
partition by the key. Hadoop currently performs a block-
level sort on the compound (partition, key) to achieve both
partitioning and sorting in each partition. Given the relatively
small block size, a properly-tuned buffer will allow such
sorting to complete in memory. Then the sorted map output is
written to a file using synchronous I/O. A mapper completes
after its output has been persisted for fault tolerance.

Map output is then shuffled to the reducers (in the shuffling
phase). To do so, reducers periodically poll a centralized
service asking about completed mappers and once notified,
requests data directly from the completed mappers (pull-
based communication). Under normal circumstances, this
data transfer happens soon after a mapper completes and so
this data is often available in the mapper’s memory.

Over time, a reducer collects pieces of sorted output from
many completed mappers. Unlike before, this data cannot
be assumed to fit in memory for larger workloads. As the
reducer’s buffer fills up, these sorted pieces of data are merged
and written to a file on disk. A background thread merges
these on-disk files progressively whenever the number of



Data Load

O
2
yse] depy

@—» Data Load

Local Sort

=
)
=

Local Sort

ysel depy

* Combine * Combine

i

Map Write Map Write

J><J Shuffle

Merge & Merge &
* Combine

* Combine
Reduce()

Figure 1. Architecture of the Hadoop implementation of MapReduce.

Reduce()

yse] 8anpay

yse] 8anpay

Final Write Final Write

* optional

such files exceeds a threshold F (in a so-called multi-pass
merge phase). When a reducer has collected all of the map
output, it will perform a multi-pass merge if the on-disk files
exceed F; otherwise, it will perform a final merge to produce
all key-value pairs in sorted order of the key. Over the sorted
file, the reducer identifies each list of values sharing the
same key and then applies the reduce function to the list.
The output of the reduce function is written back to HDFS.

Finally, when the reduce function is commutative and
associative, a combine function (typically sharing the code
with the reduce function) is applied right after the map
function, as shown in Fig. 1, to perform partial aggregation
and reduce the size of map output. It can be further applied
in a reducer when its data buffer fills up.

III. BENCHMARKING AND ANALYSIS

The requirements for scalable one-pass analytics, namely,
incremental processing and fast in-memory processing when-
ever possible, require the entire MapReduce program of a
query to be non-blocking and have low CPU and I/O overhead.
In this section, we examine whether current MapReduce
systems satisfy these requirements.

A. Experimental Setup

We consider two applications in benchmarking: click
stream analysis which represents workloads for stream
processing, and web document analysis which represents
workloads for one-pass analysis over stored data. The
workloads tested are summarized in Table I. (In ongoing work,
we are extending our benchmark to Twitter feed analysis and
complex queries such as top-k and graph queries.) 2

In click stream analysis, an important task is sessionization,
which reorders click logs into individual user sessions. Its

2An existing benchmark [24] mostly contains simple aggregate
queries over stored data. Our benchmark includes more complex
tasks required in real-world applications, many of which are
performed on data streams.

MapReduce program employs the map function to extract the
url and user id from each click log, then groups click logs by
user id, and implements the sessionization algorithm in the
reduce function. A key feature of this task is a large amount
of intermediate data due to the reorganization of all click
logs by user id. Another task in click stream analysis is page
frequency counting. As a simple variant on the canonical
word counting problem, it counts the number of visits to
each url. A similar task counts the number of clicks that
each user has made. For such counting problems, a combine
function can be applied to significantly reduce the amount
of intermediate data. For this application, we use the click
logs from the World Cup 1998 website > and replicate it to
larger sizes as needed.

The second application is web document analysis. A key
task is inverted index construction, in which a large collection
of web documents (or newly crawled web documents) is
parsed and an inverted index on the occurrences of each word
in those documents is created. In its MapReduce program,
the map function extracts (word, (doc id, position)) pairs
and the reduce function builds a list of document ids and
positions for each word. The intermediate data is typically
smaller than the document collection itself, but still of a
substantial size. Other useful tasks in this application involve
word frequency analysis, which are similar to page frequency
analysis mentioned above, hence omitted in Table I. For this
application, we use the 427GB GOV2 document collection
created from an early 2004 crawl of government websites.*

The Hadoop configuration mainly used the default settings
with a few changes. We ran the NameNode and JobTracker
daemons on the head node and ran DataNode and TaskTracker
daemons on each of the 10 compute nodes. The HDFS block
size was 64MB. HDFS replication was turned down to 1
from the default 3. The map output buffer was tuned for
each workload to ensure there were no spills to disk. JVM
reuse was enabled. The JVM heap size was set to 1GB.

A variety of tools are used for profiling, all of which have
been packaged into a single program for simplicity. This
program launches standard utilities such as iostat and ps,
and logs the output to a file. We use the logged information
to track metrics such as disk utilization and system CPU
utilization. Hadoop-specific plots such as the task history
were created by a publicly available parser.

B. Result Analysis

Table I shows the running time of the workloads as
well as the sizes of input, output, and intermediate data
in our benchmark. Due to space constraints, our analysis
below focuses on the sessionization workload that involves
the largest amount of intermediate data. We comment on
the results of other workloads in the discussion whenever

3http://ita.ee.lbl.gov/html/contrib/WorldCup.html
“http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm



Table T
WORKLOADS AND THEIR RUNNING TIME IN THE BENCHMARK.

Click Streams Web Documents

Setting Sessioni- | Page fre- | Per-user Inverted

zation quency count Index
Input data 256GB 508GB 256GB 427GB
Map output data 269GB 1.8GB 2.6 GB 150GB
Reduce spill data 370GB 0.2GB 1.4 GB 150GB
Intermediate/input 250% 0.4% 1.0% 70%
Output data 256GB 0.02GB 0.6GB 103GB
Map tasks 3,773 7,580 3,773 6,803
Reduce tasks 40 40 40
Completion time 76 min. 40 min. | 24 min. 118 min.
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appropriate. Fig. 2 (a) shows the task timeline for the
sessionization workload, i.e., the number of tasks for the
four main operations in its MapReduce job: map (including
sorting), shuffle, merge (the multi-pass part), and reduce
(including the final scan to produce a single sorted run). As
can be seen, time is roughly evenly split between the map
and reduce phases, with a substantial merge phase in between.
Also note that some periodic background merges take place
even before all map tasks complete. When the intermediate
data is reduced as in other workloads, first the merge phase
shrinks and then the reduce phase also shrinks.

1. Cost of Parsing. A potential CPU bottleneck can be
parsing line-oriented flat text files into the data types that map
functions expect. To investigate this possibility, we prepared
two different formats of the same data to use as input for the
sessionization workload. The first format is the original line-
oriented text files, leaving the task of extracting user ids to a
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Experimental results using the sessionization workload.

regular expression in the map function. The second format is
the same data preprocessed into Hadoop’s SequenceFile
binary format, allowing the map function to immediately
operate on the data without having to do any parsing. We
ran the sessionization workload on these two inputs and
observed almost no difference in either running time or CPU
utilization between the jobs. We therefore concluded that
input parsing is a negligible overall cost.

2. Cost of Map Output. A potential I/O bottleneck can
be the writes of map output to disk using synchronous 1/O,
required for fault tolerance in MapReduce. In our benchmark,
we observed that although each map task did block while
performing this write, it did not take up a large portion of
a map task’s lifetime. In the sessionization workload with
a large amount of map output data, these writes took 1.3
seconds on average, while the average map task running time
took 21.6 seconds. This 6% time did not make a significant



Table II
AVERAGE CPU CYCLES PER NODE, MEASURED BY CPU SECONDS, IN
THE MAP PHASE (256GB WORLDCUP DATASET).

Per-user count
440 sec. (52%)
406 sec. (48%)

Sessionization
566 sec. (61%)
369 sec. (39%)

Map function (%)
Sorting (%)

contribution to a map task’s running time relative to other
parts. Furthermore, the recent MapReduce Online system [6]
proposes to pipeline map output to the reducers and persists
the data using asynchronous I/O. Hence, it can be used as
a solution if the map output may be observed as an 1/O
bottleneck elsewhere.

3. Overhead of Sorting. Recall from §II that when a
map task finishes processing its input block, the key-value
pairs must be partitioned according to different reducers and
key-value pairs in each partition must be sorted to facilitate
the merge in reducers. Hadoop accomplishes this task by
performing a sort on the map output buffer on the compound
of (partition, key).

First, we observe from Fig. 2 (b) that CPUs are busy in the
map phase. It is important to note that the map function in
the sessionization workload is relatively CPU light: it parses
each click log into user id, timestamp, url, etc., and emits
a key-value pair where the key is the user id and the value
contains other attributes. The rest of cost in the map phase
is attributed to sorting of the map output buffer. To quantify
the costs of the map function and sorting, we performed
detailed profiling of CPU cyles consumed by each, as shown
in Table II. In the sessionization workload, roughly 61% of
CPU cycles were consumed by the map function while 39%
was by sorting. In the per-user click counting workload, the
map function simply emits pairs in the form of (user id, “1”),
and up to 48% of CPU cycles were consumed by sorting
these pairs. We further note that if we expedite click log
parsing in the map function using the recent proposal of
mutable parsing [17], the overhead of sorting will be even
more prominent in the map phase.

Conclusion: Sorting of map output can introduce a
significant CPU overhead, due to the use of the sort-merge
implementation of the group-by operation in MapReduce.

4. Overhead of Merging. As map tasks complete and
their output files are shuffled to the reducers, each reducer
writes these files to disk (since there is not enough memory
to hold all of them) and performs multi-pass merge: as soon
as the number of on-disk files reaches F, it merges these files
to a larger file and writes it back to disk. Such a merge will

be triggered next time when the reducer sees F files on disk.

This process continues until all map tasks have completed
and the reducer has brought the number of on-disk files down
to F. It completes by merging these on-disk files and feeding
sorted data directly into the reduce function.

In the sessionization workload, the overhead of multi-pass
merge is particularly noticeable when most map tasks have

100 Ereduce
m shuffle

- 80 W map
=]
g 60 merge
5]
-
g 40
[_1

20

0
0 2000 4000 6000 8000
159min
Time elapsed (s)

Figure 3. Task timeline using the inverted index construction workload.

completed. In the CPU utilization plot in Fig. 2 (b), there
is an extended period (from time 1800 to 2400) where the
CPUs are mostly idle. While CPUs could be idle due to
both disk I/O and network I/O, the CPU iowait graph in Fig.
2 (c) shows that it is largely due to outstanding disk I/O
requests, and the graph in Fig. 2 (d) shows a large number
of bytes read from disk in the same period. All of these
observations match the merge activities shown between the
map and reduce phases in the task timeline plot in Fig. 2

(a).

Overall, multi-pass merge is a blocking operation. The
reduce function cannot be applied until this operation
completes with all the data arranged into a single sorted
run. This blocking effect causes low CPU utilization when
most map tasks complete and prevents any answer from
being returned by reducers for an extended period.

Moreover, the multi-pass merge operation is also I/O
intensive. Our profiling tool shows that in sessionization,
the reducers read and write 370GB data in the multi-pass
merge operation while the input data has only 256 GB, as
shown in Table I. The inverted index workload incurs a
somewhat reduced but still substantial I/O cost of 150GB
data in this operation. As shown in Fig. 3, the blocking
merge phase is present in this workload as well. Progress is
stopped until local intermediate data is merged on each node.
In simpler workloads, such as counting the number of clicks
per user, there is an effective combine function to reduce the
intermediate data size. However, it is interesting to observe
from Table I that even if there is ample memory to perform
in-memory processing, the multi-pass merge still causes I/O,
e.g., 1.4GB spill from the reducers. This is because when the
memory fills up, each reducer applies the combine function
to the data in memory but still writes the data to disk waiting
for all future data to produce a single sorted run.

Conclusion: The multi-pass merge operation is blocking.
It is I/O intensive for workloads with large amounts of
intermediate data. It may still cause I/O even if there is
enough memory to hold all intermediate data.
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Figure 4. Results for MapReduce Online using the sessionization workload.

C. Architectural Improvements

We next explore some architectural choices to investigate
whether these changes can eliminate the blocking effect
and the I/O bottleneck observed in the previous benchmark.
The motivation is that when given a substantial amount of
intermediate data, the disk utilization stays high for most time
of a MapReduce job (e.g., over 90% in the sessionization
workload). This is because the disk on each node not only
serves the input data from HDFS and writes the final output to
HDFS, but also handles intermediate data including the map
output and the reduce spill in the multi-pass merge. Given a
mix of requests from different MapReduce operations, the
disk is often maxed out and subject to random I/Os.

Separate storage devices. One architectural improvement
is to employ multiple devices per node for storage, thereby
reducing disk contention in MapReduce operations. In this
experiment, in addition to the existing hard disk, we add
a solid state drive (64GB Intel SSD) to each node in the
cluster. We use the hard disk to handle the input and output
with HDFS and use the smaller, but faster, SSD to hold all
intermediate data. This way, reading input data from HDFS
and managing the intermediate data can proceed in parallel.
In addition, the writes of map output and the reads/writes for
multi-pass merge can benefit from the fast random access
offered by the SSD.

We show the CPU utilization (among many other measure-
ments) of the sessionization workload in Fig. 2 (e). The main
observations include the following. Extra storage devices
help reduce the total running time, from 76 minutes to 43
minutes for sessionization. Detailed profiling shows that
roughly 2/3 of the performance benefit comes from having an
extra storage device, and about 1/3 of it comes from the SSD
characteristics themselves. However, there is still a significant
period where the CPU utilization is low, demonstrating that
the multi-pass merge continues to be blocking and involving
intensive 1/Os.

A separate distributed storage system. An alternative
way to address the disk contention problem is to use separate
systems to host the distributed storage and MapReduce com-
putation. This is analogous to Amazon’s Elastic MapReduce
where the S3 system handles distributed storage and the EC2

system handles MapReduce computation with its local disks
reserved for the use of intermediate data. This comes at the
price of data locality though; tasks will no longer be able to
be scheduled on the same nodes where data resides and so
this architecture will incur additional network overhead. In
our experiment, we simulate two subsystems by allocating 5
nodes to host the distributed storage and 5 nodes to serve
as compute nodes for MapReduce. We reduce the input data
size accordingly to keep the running time comparable to
before.

Similar to the previous experiment, the separation of
the distributed storage system helps reduce the running
time of sessionization from 76 minutes to 55 minutes
(which, however, does not have the benefits of SSDs). More
importantly, the CPU utilization plot in Fig. 2 (f) shows that
the issues of blocking and intensive I/O remain, which agrees
with the previous experiment.

Conclusion: Architectural improvements can help reduce
contention in storage device usage and decrease overall
running time. However, they do not eliminate the blocking
effect or the I/0 bottleneck observed about the sort-merge
implementation of MapReduce.

D. MapReduce Online

We finally consider a recent system called MapReduce
Online that implements a Hadoop Online Prototype (HOP)
with pipelining of data [6]. This prototype has two distinct
features: First, as each map task produces output, it can
push data eagerly to the reducers. The granularity of such
data transmission is controlled by a parameter. Second, an
adaptive control mechanism is in place to balance work
between mappers and reducers. For instance, if the reducers
become overloaded, the mappers will write the output to
local disks and wait until reducers are able to keep up again.
A potential benefit of HOP is that with pipelining, reducers
receive map output earlier and can begin multi-pass merge
earlier, thereby reducing the time required for the merge
work after all mappers finish.

However, it is important to note that HOP adds pipelining
to an overall blocking implementation of MapReduce based
on sort-merge. As is known in the database literature, the sort-



merge implementation of group by is an inherently blocking
operation. HOP has a minor extension to periodically output
snapshots (e.g., when reducers have received 25%, 50%,
75%, ..., of the data). This is done by repeating the merge
operation for each snapshot. This is not real incremental
computation desired in stream processing, and may incur
a significant I/O overhead in doing so. Furthermore, such
pipelining does not reduce CPU and 1/O overhead but only
redistributes workloads between mappers and reducers.

Fig. 4 shows some initial results of MapReduce Online
using the sessionization workload. The most important
observation is that the CPU utilization plot shows a similar
pattern of low values in the middle of the job. While CPU
can be idle due to both I/O wait and network wait (given the
different communication model used in MapReduce Online),
the CPU iowait graph again shows a spike in the middle of
the job. Hence, our previous observations of blocking and
I/O activity due to multi-pass merge still hold here.

There are several subtle differences from the previous
results of benchmarking Hadoop. The total running time
is actually longer using MapReduce Online. A possible
explanation for this difference is that MapReduce Online is
based off an older version of Hadoop, 0.19.2, whereas we
benchmarked using 0.20.0. Any performance optimizations
made during this time will only be present in the newer
version. Another possible reason is that MapReduce Online
transmits map output eagerly in finer granularity and hence
increases network cost, which in turn causes lower CPU
utilization. Another thing to note is that the CPU utilization
in the map phase when running HOP is lower than when
running on stock Hadoop. We verified that the total number
of CPU cycles consumed in the map phase are similar across
both implementations by observing that HOP spends a greater
amount of time in the map phase, with a somewhat reduced
level of CPU utilization. Finally, this prototype moves some
of the sorting work to reducers, which may also affect the
CPU utilization in different phases of the job. In our ongoing
work, we will continue benchmarking MapReduce Online,
including the use of other workloads, to better explain its
behavior.

E. Summary of Results

In this section, we benchmarked Hadoop and MapReduce
Online which both use the sort-merge implementation of the
group by operation in MapReduce. Our goal was to answer
the question that we raised at the beginning of the study:
Do current MapReduce systems satisfy the requirements for
scalable one-pass analytics, namely, incremental processing
and fast in-memory processing whenever possible? Our
benchmarking results can be summarized as follows.

» The sorting step of the sort-merge implementation
incurs high CPU cost, hence unsuitable for fast in-
memory processing.

» Multi-pass merge in sort-merge is blocking and can
incur high I/O cost given substantial intermediate data,
hence not suitable for incremental processing or fast
in-memory processing.

» Using extra storage devices and alternative storage
architectures do not eliminate blocking or the I/O
bottleneck.

» The Hadoop Online Prototype with pipelining does
not eliminate blocking, the CPU bottleneck, or the I/O
bottleneck.

IV. DESIGN REQUIREMENTS

In this section, we articulate the design requirements
for incremental, one-pass analytics using MapReduce. The
insights from our experimental evaluation indicate several
architectural drawbacks that must be addressed before
MapReduce can be effectively used for incremental one-
pass analytics. They also reveal techniques that can be
incorporated to improve performance. Below, we discuss how
MapReduce systems should be rearchitected to overcome
their current drawbacks and augmented with additional
techniques for performance. To aid our discussion, we
highlight the architectural choices made by Hadoop, MapRe-
duce Online, and an ideal system for incremental, one-pass
analytics in Table III.

1. To perform group-by for parallel processing, Hadoop
and MapReduce Online adopt the sort-merge implementation,
which causes unnecessary CPU and I/O overheads, and blocks
the reduce function from starting especially when multi-pass
merge is applied—an observation that is corroborated by our
experimental findings. Consequently, we advocate a hash-only
implementation to replace the sort-merge implementation of
group-by, thereby eliminating the CPU overhead of sorting.
It further offers a flexible framework for incorporating new
techniques to address other drawbacks of existing systems
including blocking and I/O overheads.

2. Regarding communication, MapReduce Online allows
push-based shuffling in addition to the pull-only style in
Hadoop. By pushing data items from the map output, it
allows the reducers to receive data earlier, from which latency-
sensitive applications may potentially benefit. Our proposed
system also supports push-based shuffling to extract this
benefit.

3. Incremental processing requires that an answer to a
query be produced as soon as all the data needed to produce
this answer has been read. Consider a query that returns all
the groups where the count of items exceeds a threshold.
For incremental processing, a group needs to be output as
soon as the count of its items has reached the threshold.
Hadoop does not satisfy this requirement since it can at
most perform partial aggregation in individual data blocks
but do not perform global aggregation until sort-merge
completes. MapReduce Online can perform sort-merge and
global aggregation periodically when a snapshot is generated.



[ [ Hadoop | MR Online [ Incremental One-pass Analytics
Group By Sort-Merge | Sort-Merge Hash only
Shuffling Pull Push / Pull Push / Pull
Incremental || No No (periodic snapshot-based output only) | Fully incremental
Processing
In-memory No No Yes, if data < memory;
Processing otherwise, in-memory processing for important keys

Table III
COMPARISON BETWEEN HADOOP, MAPREDUCE ONLINE, AND AN IDEAL SYSTEM FOR INCREMENTAL, ONE-PASS ANALYTICS.

Using a hash-based implementation, it is possible to
support incremental processing using new techniques. As
data items arrive at a reducer, the reduce function can be
applied to all groups simultaneously when there is sufficient
memory. To reduce the cost of such incremental processing,
partial aggregation using the combine function can be applied
in the mappers to reduce the size of data sent to reducers.
How to support the combine function for complex analytical
tasks such as top-k and graph queries is an open question.

4. For performance, stream processing requires fast in-
memory processing without disk I/O. Hadoop and MapRe-
duce Online are unable to meet this requirement due to the
expensive CPU operations and significant I/O operations in
the sort-merge implementation, as observed in our experi-
mental study. Our proposed hash-based system can support
fast in-memory processing whenever the computation states
of the reduce function for all groups fit in memory. In cases
when memory is not large enough to do so, a plausible
solution is to recognize important groups (e.g., specified by
the application or based on their frequencies in the data set)
and allocate memory intelligently to support fast in-memory
processing for these groups.

To meet all the requirements for incremental one-pass
analytics, we propose to design a new parallel data streaming
platform that (i) uses a purely hash-based framework to sup-
port MapReduce’s group-by functionality for parallelism, (if)
extends the hash framework with incremental computation,
where the computation can be either exact or approximate,
to minimize intermediate data sizes and return pipelined
answers, and (iif) supports in-memory stream processing for
frequent keys in the data set when memory is less than the
intermediate data size. This new platform aims to offer near
real-time stream processing that obviates the need for data
loading and returns pipelined answers as data arrives, while
also supporting efficient query processing.

V. SYSTEM IMPLEMENTATION AND INITIAL RESULTS

In this section, we sketch an initial design of our system
and show preliminary results. Fig. 5 shows the architecture
of our system based on Hadoop. We re-implement the sort-
merge related components in map and reduce modules (the
two gray boxes) using hash-based techniques.

In the map module, we provide two options to replace the
use of sorting for partitioning and grouping map output by
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keys. (1) The map output is scanned once for partitioning,
and no effort is spent for grouping. This method only works if
there is no combine function. (2) Our system also implements
Hybrid Hash [25] if there is a combine function. In most
cases, the map output fits in memory so Hybrid Hash is
simply in-memory hashing. Both options avoid sorting so as
to save CPU cycles.

In the reduce module, we implement three hash-based
techniques. (1) Our system uses Hybrid Hash [25] to group
key-value pairs by key. This method works with or without
a combine function, but is still blocking and results in a
I/O cost comparable to the sort-merge based implementation
in Hadoop. (2) To support incremental computation and
reduce I/Os when a combine function is available, we further
implement an incremental hash technique, which maintains
a state for each key, and updates it incrementally. (3) For the
case that the memory cannot hold the states of all the keys,
we further optimize the incremental hash by borrowing an
existing online frequent algorithm to identify hot keys, and



keep hot keys in memory. As the size of a state is usually
sublinear in the number of values aggregated, maintaining
hot keys instead of random keys in memory results in less
I/0s. Moreover, hot keys are typically of greater importance
to the users. This technique can return (approximate) results
for these keys as early as when all the input data has arrived
at the reducers.

Our hash techniques are implemented based on several
libraries developed by us for this system. The hash function
library provides a set of pair-wise independent hash functions
to meet the requirement of hashing techniques. In order to
avoid the performance overhead of creating a large number
of Java objects, our system implements its the key data
structures in byte arrays in the memory management library.
The file management library organizes the on-disk data of
the hash techniques. The user function library provides some
commonly used map and reduce functions. Our system also
includes some system utilities such as system log manager,
progress reporter, and CPU and I/O profiler.

We conducted an initial experimental comparison between
carefully tuned stock Hadoop and our hash-based system.
The hash-based system can save up to 48% of CPU cycles,
and up to 53% of running time. Furthermore, the I/O cost
due to internal data spills in the reduce phase can be reduced
by three orders of magnitude when the frequent algorithm is
used together with hashing.

VI. RELATED WORK

Query Processing using MapReduce [12], [14], [15], [19],
[21], [23], [24], [30], [34] has been a research topic of
significant interest lately. To the best of our knowledge,
none of these systems support stream processing or one-pass
processing of stored data with early approximate answers.
The closest work to ours is MapReduce Online [6] which
we have discussed in an earlier section.

There have also been several proposals to improve MapRe-
duce performance. These efforts target specific areas of the
MapReduce infrastructure, but are not targeted at one-pass
analytics. An improved speculative execution strategy [35],
for example, will only have a significant impact on the
running time of short jobs because only the final wave of tasks
is affected. Many of the other proposed techniques can be
leveraged in our one-pass analytical system as optimizations.

Parallel Databases: Parallel databases in the 80’s and 90’s
[9], [8] required special hardware and lacked sufficient
solutions to fault tolerance, hence hard to scale. Emerging
large-scale parallel databases [2], [10] have started to employ
MapReduce for its benefits of parallelism and fault tolerance.
Our research is aligned with these efforts but focuses on
one-pass analytics. Hyracks [4] is a new parallel software
platform that offers a DAG-based programming model,
which is more general than the MapReduce programming

model. However, Hyracks does not offer more for efficient
incremental computation than Hadoop.

Data Stream Systems: Data stream processing has been
intensively studied in the database community. Most data
stream systems (e.g., [3], [5]) have not considered highly
scalable stream processing for massive data sets. Recent work
on distributed stream processing has considered a distributed
federation of participating nodes in different administrative
domains [1], addressed the routing of tuples between nodes
[31], and exploited pipelined parallelism for joins [32].
Our work differs fundamentally from these techniques as it
considers the new MapReduce model for massive partitioned
parallelism and extends it to incremental one-pass processing,
which will be used to support stream processing.

Parallel Stream Processing: In the systems community,
several parallel stream systems including System S [11],
[26], [18], [36], Streamlt [27], [28], [29] and S4 [22] have
been developed. These systems adopt a workflow based
programming model. These systems usually trade fault-
tolerance for performance. Therefore, unlike MapReduce,
the output of these systems can be nondeterministic; that
is, different execution plans may result in different output.
Moreover, these systems leave many systems issues such
as memory management and I/O operations to user code,
whereas MapReduce systems abstract away these issues in a
simple user programming model and handle all the memory
and I/O related issues internally within the system.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied whether it is possible to bring
the benefits of the MapReduce computational model to
incremental one-pass analytics. We conducted a detailed
empirical performance study of Hadoop and MapReduce
Online using a variety of workloads and identified several
architectural drawbacks of current systems, such as data
loading, the CPU bottleneck of sort-merge, and the 1/O
bottleneck and blocking in multi-pass merge. Based on these
insights, we argued for several architectural changes that
must be made to MapReduce, such as hash-based group-
by, incremental processing, partial aggregation, and full in-
memory processing of important keys. Our ongoing work
comprises the design of a new parallel streaming system
that implements these design changes to efficiently support
incremental one-pass analytics using the MapReduce model.
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